Downtown San Diego and USS Midway. The USS Midway was a US Navy aircraft carrier, launched in 1945 and active through the Vietnam War and Operation Desert Storm, as of 2008 a museum along the downtown waterfront in San Diego.

Location: San Diego, California

Image ID: 22430

Location: San Diego, California

Image ID: 22430

Macombs Dam Bridge. Macombs Dam Bridge is a swing bridge that spans the Harlem River in New York City, connecting the boroughs of Manhattan and the Bronx near Yankee Stadium. It is the third-oldest bridge in New York City and was designated an official landmark in January of 1992. The bridge is operated and maintained by the New York City Department of Transportation.

Location: Manhattan, New York City

Image ID: 11147

Location: Manhattan, New York City

Image ID: 11147

The Palomar Observatory, located in north San Diego County California, is owned and operated by the California Institute of Technology. The Observatory supports the research of the Caltech faculty, post-doctoral fellows and students, and the researchers at Caltechs collaborating institutions. Palomar Observatory is home to the historic Hale 200-inch telescope. Other facilities on the mountain include the 60-inch, 48-inch, 18-inch and the Snoop telescopes.

Location: Palomar Observatory, San Diego, California

Image ID: 12699

Location: Palomar Observatory, San Diego, California

Image ID: 12699

The Palomar Observatory, located in north San Diego County California, is owned and operated by the California Institute of Technology. The Observatory supports the research of the Caltech faculty, post-doctoral fellows and students, and the researchers at Caltechs collaborating institutions. Palomar Observatory is home to the historic Hale 200-inch telescope. Other facilities on the mountain include the 60-inch, 48-inch, 18-inch and the Snoop telescopes.

Location: Palomar Observatory, San Diego, California

Image ID: 12700

Location: Palomar Observatory, San Diego, California

Image ID: 12700

The Palomar Observatory, located in north San Diego County California, is owned and operated by the California Institute of Technology. The Observatory supports the research of the Caltech faculty, post-doctoral fellows and students, and the researchers at Caltechs collaborating institutions. Palomar Observatory is home to the historic Hale 200-inch telescope. Other facilities on the mountain include the 60-inch, 48-inch, 18-inch and the Snoop telescopes.

Location: Palomar Observatory, San Diego, California

Image ID: 12701

Location: Palomar Observatory, San Diego, California

Image ID: 12701

The Palomar Observatory, located in north San Diego County California, is owned and operated by the California Institute of Technology. The Observatory supports the research of the Caltech faculty, post-doctoral fellows and students, and the researchers at Caltechs collaborating institutions. Palomar Observatory is home to the historic Hale 200-inch telescope. Other facilities on the mountain include the 60-inch, 48-inch, 18-inch and the Snoop telescopes.

Location: Palomar Observatory, San Diego, California

Image ID: 12702

Location: Palomar Observatory, San Diego, California

Image ID: 12702

The Palomar Observatory, located in north San Diego County California, is owned and operated by the California Institute of Technology. The Observatory supports the research of the Caltech faculty, post-doctoral fellows and students, and the researchers at Caltechs collaborating institutions. Palomar Observatory is home to the historic Hale 200-inch telescope. Other facilities on the mountain include the 60-inch, 48-inch, 18-inch and the Snoop telescopes.

Location: Palomar Observatory, San Diego, California

Image ID: 12703

Location: Palomar Observatory, San Diego, California

Image ID: 12703

The old Point Loma lighthouse operated from 1855 to 1891 above the entrance to San Diego Bay. It is now a maintained by the National Park Service and is part of Cabrillo National Monument.

Location: Cabrillo National Monument, San Diego, California

Image ID: 14521

Location: Cabrillo National Monument, San Diego, California

Image ID: 14521

The old Point Loma lighthouse operated from 1855 to 1891 above the entrance to San Diego Bay. It is now a maintained by the National Park Service and is part of Cabrillo National Monument.

Location: Cabrillo National Monument, San Diego, California

Image ID: 14523

Location: Cabrillo National Monument, San Diego, California

Image ID: 14523

The old Point Loma lighthouse operated from 1855 to 1891 above the entrance to San Diego Bay. It is now a maintained by the National Park Service and is part of Cabrillo National Monument.

Location: Cabrillo National Monument, San Diego, California

Image ID: 14524

Location: Cabrillo National Monument, San Diego, California

Image ID: 14524

The old Point Loma lighthouse operated from 1855 to 1891 above the entrance to San Diego Bay. It is now a maintained by the National Park Service and is part of Cabrillo National Monument.

Location: Cabrillo National Monument, San Diego, California

Image ID: 14525

Location: Cabrillo National Monument, San Diego, California

Image ID: 14525

NASSCO Builder, a floating drydock operated by the National Steel and Shipbuilding Company, with a boat under construction shrouded in white within the drydock.

Location: San Diego, California

Image ID: 22342

Location: San Diego, California

Image ID: 22342

Old Point Loma Lighthouse, sitting high atop the end of Point Loma peninsula, seen here with San Diego Bay and downtown San Diego in the distance. The old Point Loma lighthouse operated from 1855 to 1891 above the entrance to San Diego Bay. It is now a maintained by the National Park Service and is part of Cabrillo National Monument.

Location: San Diego, California

Image ID: 22352

Location: San Diego, California

Image ID: 22352

Old Point Loma Lighthouse, sitting high atop the end of Point Loma peninsula, seen here with San Diego Bay and downtown San Diego in the distance. The old Point Loma lighthouse operated from 1855 to 1891 above the entrance to San Diego Bay. It is now a maintained by the National Park Service and is part of Cabrillo National Monument.

Location: San Diego, California

Image ID: 22409

Location: San Diego, California

Image ID: 22409

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10370

Species: Mandelbrot fractal,

Image ID: 10370

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10371

Species: Mandelbrot fractal,

Image ID: 10371

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10372

Species: Mandelbrot fractal,

Image ID: 10372

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10373

Species: Mandelbrot fractal,

Image ID: 10373

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10374

Species: Mandelbrot fractal,

Image ID: 10374

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10376

Species: Mandelbrot fractal,

Image ID: 10376

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10377

Species: Mandelbrot fractal,

Image ID: 10377

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10379

Species: Mandelbrot fractal,

Image ID: 10379

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10380

Species: Mandelbrot fractal,

Image ID: 10380

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10381

Species: Mandelbrot fractal,

Image ID: 10381

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10382

Species: Mandelbrot fractal,

Image ID: 10382

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10384

Species: Mandelbrot fractal,

Image ID: 10384

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10385

Species: Mandelbrot fractal,

Image ID: 10385

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10386

Species: Mandelbrot fractal,

Image ID: 10386

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10387

Species: Mandelbrot fractal,

Image ID: 10387

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10388

Species: Mandelbrot fractal,

Image ID: 10388

Permalink: Opera photos

All photographs copyright © Phillip Colla / Oceanlight.com, all rights reserved worldwide.

All photographs copyright © Phillip Colla / Oceanlight.com, all rights reserved worldwide.