The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10368

Species: Mandelbrot fractal,

Image ID: 10368

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10369

Species: Mandelbrot fractal,

Image ID: 10369

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10375

Species: Mandelbrot fractal,

Image ID: 10375

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10378

Species: Mandelbrot fractal,

Image ID: 10378

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10383

Species: Mandelbrot fractal,

Image ID: 10383

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10391

Species: Mandelbrot fractal,

Image ID: 10391

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10395

Species: Mandelbrot fractal,

Image ID: 10395

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 18729

Species: Mandelbrot fractal,

Image ID: 18729

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 18731

Species: Mandelbrot fractal,

Image ID: 18731

Fractal design. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 18732

Species: Mandelbrot fractal,

Image ID: 18732

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 18737

Species: Mandelbrot fractal,

Image ID: 18737

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 18739

Species: Mandelbrot fractal,

Image ID: 18739

Bubbles rise from the depths of the ocean. Black and white / grainy.

Location: Galapagos Islands, Ecuador

Image ID: 16445

Location: Galapagos Islands, Ecuador

Image ID: 16445

Bubbles rise from the depths of the ocean. Black and white / grainy.

Location: Galapagos Islands, Ecuador

Image ID: 16446

Location: Galapagos Islands, Ecuador

Image ID: 16446

Bubbles rise from the depths of the ocean. Black and white / grainy.

Location: Galapagos Islands, Ecuador

Image ID: 16447

Location: Galapagos Islands, Ecuador

Image ID: 16447

Bubbles rise from the depths of the ocean. Black and white / grainy.

Location: Galapagos Islands, Ecuador

Image ID: 16448

Location: Galapagos Islands, Ecuador

Image ID: 16448

Bubbles rise from the depths of the ocean. Black and white / grainy.

Location: Galapagos Islands, Ecuador

Image ID: 16449

Location: Galapagos Islands, Ecuador

Image ID: 16449

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10370

Species: Mandelbrot fractal,

Image ID: 10370

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10371

Species: Mandelbrot fractal,

Image ID: 10371

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10372

Species: Mandelbrot fractal,

Image ID: 10372

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10373

Species: Mandelbrot fractal,

Image ID: 10373

The Mandelbrot Fractal. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10374

Species: Mandelbrot fractal,

Image ID: 10374

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10376

Species: Mandelbrot fractal,

Image ID: 10376

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10377

Species: Mandelbrot fractal,

Image ID: 10377

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10379

Species: Mandelbrot fractal,

Image ID: 10379

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10380

Species: Mandelbrot fractal,

Image ID: 10380

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10381

Species: Mandelbrot fractal,

Image ID: 10381

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10382

Species: Mandelbrot fractal,

Image ID: 10382

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10384

Species: Mandelbrot fractal,

Image ID: 10384

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by *self-similarity*, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.

Species: Mandelbrot fractal,*Mandelbrot set*

Image ID: 10385

Species: Mandelbrot fractal,

Image ID: 10385

Abstracts and Patterns, Black and White, Bubble, Ecuador, Fractal, Galapagos Islands, Gallery: Abstract, Gallery: Fractal, Gallery: Galapagos Islands, Gallery: Ocean And Light,