Last Fractal

Ok, here’s a last fractal (for now). I’m just completing a set of fractal images for printing 6’x6′ (that’s big!) and will finish off this month’s blog by showing you just one more:

Detail within the Mandelbrot set fractal.  This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features.  Fractals are complex geometric shapes that exhibit repeating patterns typified by self-similarity, or the tendency for the details of a shape to appear similar to the shape itself.  Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves.  Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns.  The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set, Mandelbrot set

Detail within the Mandelbrot set fractal. This detail is found by zooming in on the overall Mandelbrot set image, finding edges and buds with interesting features. Fractals are complex geometric shapes that exhibit repeating patterns typified by self-similarity, or the tendency for the details of a shape to appear similar to the shape itself. Often these shapes resemble patterns occurring naturally in the physical world, such as spiraling leaves, seemingly random coastlines, erosion and liquid waves. Fractals are generated through surprisingly simple underlying mathematical expressions, producing subtle and surprising patterns. The basic iterative expression for the Mandelbrot set is z = z-squared + c, operating in the complex (real, imaginary) number set.
Image ID: 10376
Species: Mandelbrot Fractal, Mandelbrot set